高斯过程状态空间模型通过在转换功能上放置高斯过程来以原则方式捕获复杂的时间依赖性。这些模型具有自然的解释,作为离散的随机微分方程,但困难的长期序列的推断是困难的。快速过渡需要紧密离散化,而慢速转换需要在长副图层上备份梯度。我们提出了一种由多个组件组成的新型高斯过程状态空间架构,每个组件都培训不同的分辨率,以对不同时间尺度进行模拟效果。组合模型允许在自适应刻度上进行时间进行时间,为具有复杂动态的任意长序列提供有效推断。我们在半合成数据和发动机建模任务上基准我们的新方法。在这两个实验中,我们的方法对其最先进的替代品仅比单一时间级运行的最先进的替代品。
translated by 谷歌翻译
本文探讨了大语言模型的自然语言生成能力,并应用于编程课程中常见的两种学习资源类型。使用OpenAI Codex作为大语言模型,我们创建编程练习(包括示例解决方案和测试用例)和代码说明,从定性和定量上评估这些练习。我们的结果表明,大多数自动生成的内容既新颖又明智,在某些情况下可以按原样使用。在创建练习时,我们发现仅通过提供关键字作为模型输入来影响编程概念和它们所包含的上下文主题非常容易。我们的分析表明,大规模生成机器学习模型是指导者的工具,尽管仍然需要进行一些监督以确保生成的内容的质量在传递给学生之前。我们进一步讨论了OpenAI Codex和类似工具对入门编程教育的含义,并强调了未来的研究流,这些研究流有可能提高教师和学生的教育体验质量。
translated by 谷歌翻译
在这项工作中,我们审查并评估了一个具有公开可用和广泛使用的数据集的深度学习知识追踪(DLKT)模型,以及学习编程的新型学生数据集。评估的DLKT模型已重新实现,用于评估先前报告的结果的可重复性和可复制性。我们测试在与模型的主要架构上独立于模型的比较模型中找到的不同输入和输出层变化,以及在某些研究中隐含地和明确地使用的不同最大尝试计数选项。几个指标用于反映评估知识追踪模型的质量。评估的知识追踪模型包括Vanilla-DKT,两个长短期内存深度知识跟踪(LSTM-DKT)变体,两个动态键值存储器网络(DKVMN)变体,以及自我细致的知识跟踪(SAKT)。我们评估Logistic回归,贝叶斯知识跟踪(BKT)和简单的非学习模型作为基准。我们的结果表明,DLKT模型一般优于非DLKT模型,DLKT模型之间的相对差异是微妙的,并且在数据集之间经常变化。我们的研究结果还表明,通常的纯模型,例如平均预测,比更复杂的知识追踪模型更好地表现出更好的性能,尤其是在准确性方面。此外,我们的公制和封路数据分析显示,用于选择最佳模型的度量标准对模型的性能有明显的影响,并且该度量选择可以影响模型排名。我们还研究了输入和输出层变化的影响,过滤出长期尝试序列,以及随机性和硬件等非模型属性。最后,我们讨论模型性能可重量和相关问题。我们的模型实现,评估代码和数据作为本工作的一部分发布。
translated by 谷歌翻译
根据哪种机器学习模型提高其性能,当他们有更多数据来学习时,存在常见的假设。在这项研究中,作者希望通过使用新颖的职业学生数据进行实证实验来澄清困境。该实验比较了不同的机器学习算法,同时改变了可用于训练和测试模型的数据数量和特征组合。实验表明,数据记录的增加或其样本频率不会立即导致模型精度或性能的显着增加,但是在集合模型的情况下,准确性的方差会减少。在增加模型的输入特征的数量的同时,目睹了类似的现象。该研究驳斥了起始假设,并继续说明,在这种情况下,数据的重要性在于数据的质量而不是数据的数量。
translated by 谷歌翻译